scholarly journals NK cell expression of the killer cell lectin-like receptor G1 (KLRG1), the mouse homolog of MAFA, is modulated by MHC class I molecules

2000 ◽  
Vol 30 (3) ◽  
pp. 920-930 ◽  
Author(s):  
Laura Corral ◽  
Thomas Hanke ◽  
Russell E. Vance ◽  
Dragana Cado ◽  
David H. Raulet
2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia D’Amico ◽  
Valerio D’Alicandro ◽  
Mirco Compagnone ◽  
Patrizia Tempora ◽  
Giusy Guida ◽  
...  

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-25-SCI-25
Author(s):  
Peter Parham

Abstract Natural killer (NK) cells are phenotypically diverse lymphocytes that contribute to innate immunity, adaptive immunity and placental reproduction. Unlike B and T cells, NK cells do not use rearranging genes to make diverse antigen receptors that are clonally expressed. Instead, NK cells express diverse combinations of a variety of receptors that are encoded by conventional non-rearranging genes. Several of these receptors are specific for conserved and variable determinants of major histocompatibility complex (MHC) class I molecules. In humans, the killer-cell immunoglobulin-like receptors (KIR) are a diverse and polymorphic family of NK-cell receptors that recognize determinants of human leukocyte antigen (HLA)-A, B and C, the polymorphic human MHC class I molecules. HLA-A, B and C are the most polymorphic of human genes, and they correlate with susceptibility to a wide range of diseases and clinical outcomes, including allogeneic hematopoietic cell transplantation (HCT). During NK-cell development, interactions between epitopes of HLA class I and KIR educate the NK cells to recognize the normal expression of these epitopes on healthy cells, and to respond to unhealthy cells in which that expression is perturbed. In the context of HCT, certain types of HLA class I mismatch enable donor-derived NK cells to make an alloreactive and beneficial graft-versus-leukemia response. Although it is likely that all placental mammals have NK cells, only a small minority of these species has a diverse KIR family like that in humans. These comprise the simian primates: New World monkeys, Old World monkeys and the great apes. Under pressure from diverse and rapidly evolving pathogens, both the MHC class I and KIR gene families have been driven to evolve rapidly. Consequently, much of their character is species-specific. This is especially true for the human KIR gene family, which is qualitatively different from that of our closest relatives, the chimpanzees. Whereas chimpanzee KIR haplotype diversity represents variations on a theme of genes encoding robust MHC class I receptors, humans have an even balance between group A KIR haplotypes encoding robust HLA class I receptors and group B KIR haplotypes encoding receptors that, to varying degree, have been subject to natural selection for reduced functional recognition of HLA class I. A balance of A and B is present in all human populations and thus appears essential for the long-term survival and competitiveness of human communities. Whereas the A KIR haplotypes correlate with successful defense against viral infection, maternal B KIR haplotypes correlate with reproductive success and donor B KIR haplotypes improve the outcome of allogeneic HCT as therapy for acute myeloid leukemia. Disclosures No relevant conflicts of interest to declare.


1995 ◽  
Vol 60 (3) ◽  
pp. 281-286 ◽  
Author(s):  
MARGARITA SALCEDO ◽  
FETTER HOGLUND ◽  
HANS-GUSTAF LJUNGGREN

1996 ◽  
Vol 54 (2-3) ◽  
pp. 145-150 ◽  
Author(s):  
Frédéric Vély ◽  
Lucia Olcese ◽  
Mathieu Bléry ◽  
Eric Vivier

1997 ◽  
Vol 186 (11) ◽  
pp. 1809-1818 ◽  
Author(s):  
Marco Colonna ◽  
Francisco Navarro ◽  
Teresa Bellón ◽  
Manuel Llano ◽  
Pilar García ◽  
...  

Natural killer (NK) cell–mediated lysis is negatively regulated by killer cell inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules. In this study, we characterize a novel inhibitory MHC class I receptor of the immunoglobulin-superfamily, expressed not only by subsets of NK and T cells, but also by B cells, monocytes, macrophages, and dendritic cells. This receptor, called Ig-like transcript (ILT)2, binds MHC class I molecules and delivers a negative signal that inhibits killing by NK and T cells, as well as Ca2+ mobilization in B cells and myelomonocytic cells triggered through the B cell antigen receptor and human histocompatibility leukocyte antigens (HLA)–DR, respectively. In addition, myelomonocytic cells express receptors homologous to ILT2, which are characterized by extensive polymorphism and might recognize distinct HLA class I molecules. These results suggest that diverse leukocyte lineages have adopted recognition of self–MHC class I molecules as a common strategy to control cellular activation during an immune response.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4887-4893 ◽  
Author(s):  
Thomas Ranson ◽  
Christian A. J. Vosshenrich ◽  
Erwan Corcuff ◽  
Odile Richard ◽  
Werner Müller ◽  
...  

Abstract Several distinct classes of surface receptors can, on ligand binding, transmit signals that modulate the survival, proliferation, and apoptosis of peripheral B, T, and natural killer (NK) cells. At the population level, dynamic changes in lymphocyte cell numbers are strictly regulated to maintain a steady state, a process referred to as homeostasis. Although several studies have investigated the signals that regulate B- and T-cell homeostasis, little is known about the mechanisms that control the survival and proliferation of peripheral NK cells. Using an adoptive transfer system, we have investigated the role of γc-dependent cytokines, in particular interleukin 7 (IL-7) and IL-15, and major histocompatibility complex (MHC) class I molecules in peripheral NK-cell homeostasis. We observed that IL-15 plays a dominant role in the survival of peripheral NK cells, via maintenance of the antiapoptotic factor Bcl-2. IL-15 availability, however, also plays an important role because endogenous NK cells in the recipient mice influence the behavior of adoptively transferred NK cells. Finally, although NK cells bear functional inhibitory Ly49 receptors for MHC class I molecules, the presence or absence of specific ligands on host cells did not influence the survival or homeostatic expansion of donor NK cells.


1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


Sign in / Sign up

Export Citation Format

Share Document